К основным свойствам любой модели относится интуит. Основы моделирования систем. Задачи и упражнения

Рассмотрим, как отражаются в записи (2.1) основные общие свойства системы.

Первое такое свойство – линейность или нелинейность. Оно обычно расшифровывается как линейная (нелинейная) зависимость от входов операторов S (линейность или нелинейность параметров состояния) или (линейность или нелинейность модели в целом). Линейность может являться как естественным, хорошо соответствующим природе, так и искусственным (вводимым для целей упрощения) свойством модели.

Второе общее свойство модели – непрерывность или дискретность. Оно выражается в структуре множеств (совокупностей), которым принадлежат параметры состояния, параметр процесса и выходы системы. Таким образом, дискретность множеств Y, Т, Х - ведет к модели, называемой дискретной, а их непрерывность – к модели с непрерывными свойствами. Дискретность входов (импульсы внешних сил, ступенчатость воздействий и др.) в общем случае не ведет к дискретности модели в целом. Важной характеристикой дискретной модели является конечность или бесконечность числа состояний системы и числа значений выходных характеристик. В первом случае модель называется дискретной конечной. Дискретность модели также может быть как естественным условием (система скачкообразно меняет свое состояние и выходные свойства), так и искусственно внесенной особенностью. Типичный пример последнего – замена непрерывной математической функции на набор ее значений в фиксированных точках.

Следующее свойство модели – детерминированность или стохастичность. Если в модели среди величин х + , а , у , х - имеются случайные, т. е. определяемые лишь некоторыми вероятностные характеристиками, то модель называется стохастической (вероятностной, случайной). В этом случае и все результаты, полученные при рассмотрении модели, имеют стохастический характер и должны быть соответственно интерпретированы. С точки зрения практики, граница между детерминированными и стохастическими моделями выглядит расплывчатой. Так, в технике о любом размере или массе можно сказать, что это не точное значение, а усредненная величина типа математического ожидания, в связи с чем и результаты вычислений будут представлять собой лишь математические ожидания исследуемых величин. Однако такой взгляд представляется крайним. Удобный практический прием состоит в том, что при малых отклонениях от фиксированных значений модель считается детерминированной, а отклонение результата исследуется методами оценок или анализа ее чувствительности.


При значительных же отклонениях применяется методика стохастического исследования.

Четвертое общее свойство модели – ее стационарность или нестационарность. Сначала поясним понятие стационарности некоторого правила (процесса). Пусть в

рассматриваемом правиле присутствует параметр процесса, которым для удобства понимания будем считать время. Возьмем все внешние условия применения данного правила одинаковыми, но в первом случае мы применяем правило в момент t 0 , а во втором – в момент t 0 +Q . Спрашивается, будет ли результат применения правила одинаковым? Ответ на этот вопрос и определяет стационарность: если результат одинаков, то правило (процесс) считается стационарным, а если различен – нестационарным. Если все правила в модели стационарны, то стационарной называется и сама модель. Чаще всего стационарность выражается в неизменности во времени некоторых физических величин: стационарным является поток жидкости с постоянной скоростью, стационарна механическая система, в которой силы зависят только от координат и не зависят от времени.

Для отражения стационарности в формальной записи рассмотрим расширенный вид правила S , в которое введена его зависимость от начальных условий процесса t 0 , y 0 и зависимость входов от параметра t :

y = S (x + (t ), a , t , t 0 , у 0).

Тогда для стационарного процесса имеет место равенство

S(x + (t+Q), а,t+Q, t 0 +Q, y 0) = S (x + (t), а, t, t 0 , y 0).

Аналогично можно определить стационарность правил V и .

Другим общим свойством модели является вид составляющих кортежа (2.1). Простейшим будет случай, когда входы, выходы и параметры а в системе – это числа, а правило – математическая функция. Широко распространена ситуация, когда входы и выходы есть функции параметра процесса. Правила S , V , тогда являются либо функциями, либо операторами и функционалами. Функциями, скажем, от параметров состояния могут быть и те параметры системы, которые мы ранее называли постоянными. Описанная выше ситуация еще достаточно удобна для исследования модели на ЭВМ.

Последним упомянем свойство модели (2.1), состоящее в конечности или бесконечности числа входов, выходов, параметров состояния, постоянных параметров системы. Теория рассматривает и тот, и другой тип модели, однако на практике работают лишь с моделями с конечномерностью всех перечисленных составляющих.

Адекватность – степень соответствия модели исследуемому реальному объекту. Она никогда не может быть полной. На практике модель считают адекватной, если она с удовлетворительной точностью позволяет достичь целей исследования.

Сложность – количественная характеристика свойств объекта, описывающих модель. Чем она выше, тем сложнее модель. Однако на практике надо стремиться к наиболее простой модели, позволяющую достичь требуемые результаты изучения.

Потенциальность – способность модели дать новые знания об исследуемом объекте, спрогнозировать его поведений.

Математические модели.

Основные этапы построения математической модели:

1. составляется описание функционирования системы в целом;

2. составляется перечень подсистем и элементов с описанием их функционирования, характеристик и начальных условий, а также взаимодействия между собой;

3. определяется перечень воздействующих на систему внешних факторов и их характеристик;

4. выбираются показатели эффективности системы, т.е. такие числовые характеристики системы, которые определяют степень соответствия системы ее назначению;

5. составляется формальная математическая модель системы;

6. составляется машинная математическая модель, пригодная для исследования системы на ЭВМ.

Требования к математической модели:

Требования определяются прежде всего ее назначением, т.е. характером поставленной задачи:

"Хорошая" модель должна быть:

1. целенаправленной;

2. простой и понятной пользователю;

3. достаточной с точки зрения возможностей решения поставленной задачи;

4. удобной в обращении и управлении;

5. надежной в смысле защиты от абсурдных ответов;

6. допускающей постепенные изменения в том смысле, что, будучи вначале простой, она при взаимодействии с пользователями может становиться более сложной.

Математические модели. Математические модели представляют собой формализованное представление системы с помощью абстрактного языка, с помощью математических соотношений, отражающих процесс функционирования системы. Для составления математических моделей можно использовать любые математические средства - алгебраическое, дифференциальное, интегральное исчисления, теорию множеств, теорию алгоритмов и т.д. По существу вся математика создана для составления и исследования моделей объектов и процессов.

К средствам абстрактного описания систем относятся также языки химических формул, схем, чертежей, карт, диаграмм и т.п. Выбор вида модели определяется особенностями изучаемой системы и целями моделирования, т.к. исследование модели позволяет получить ответы на определённую группу вопросов. Для получения другой информации может потребоваться модель другого вида. Математические модели можно классифицировать как детерминированные и вероятностные, аналитические, численные и имитационные .

Детерминирован­ное моделирование отображает процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделирование отображает вероят­ностные процессы и события. В этом случае анализируется ряд реализаций случайного процесса и оцениваются средние характе­ристики, т. е. набор однородных реализаций.

Аналитической моделью называется такое формализованное описание системы, которое позволяет получить решение уравнения в явном виде, используя известный математический аппарат.

Численная модель характеризуется зависимостью такого вида, который допускает только частные решения для конкретных начальных условий и количественных параметров моделей.

Имитационная модель - это совокупность описания системы и внешних воздействий, алгоритмов функционирования системы или правил изменения состояния системы под влиянием внешних и внутренних возмущений. Эти алгоритмы и правила не дают возможности использования имеющихся математических методов аналитического и численного решения, но позволяют имитировать процесс функционирования системы и производить вычисления интересующих характеристик. Имитационные модели могут быть созданы для гораздо более широкого класса объектов и процессов, чем аналитические и численные. Поскольку для реализации имитационных моделей служат ВС, средствами формализованного описания ИМ служат универсальные и специальные алгоритмические языки. ИМ в наибольшей степени подходят для исследования ВС на системном уровне.

8. Структура модели. Моделирование - это воспроизведение хар-стик одного объекта на некот другом объекте, спец-но созданного для их изучения. Последний называется моделью.

Под структурой модели (и физической в том числе) понимают совок-ть эл-в, входящих в модель и связей между ними. При этом, модель (её элементы) может иметь ту же или иную физическую природу. Близость структур – одно из главных особенностей при моделировании. В каждом конкретном сл-е модель может выполнить свою роль тогда, когда степень ее соотв-я объекту опр-на достаточно строго. Упрощение структуры модели снижает точность.

Рассмотрим некоторые свойства моделей, которые позволяют в той или иной степени либо различать, либо отождествлять модель с оригиналом (объектом, процессом). Многие исследователи выделяют следующие свойства моделей: адекватность, сложность, конечность, наглядность, истинность, приближенность.

Проблема адекватности . Важнейшим требованием к модели является требование адекватности (соответствия) ее реальному объекту (процессу, системе и т.д.) относительно выбранного множества его характеристик и свойств.

Под адекватностью модели понимают правильное качественное и количественное описание объекта (процесса) по выбранному множеству характеристик с некоторой разумной степенью точности. При этом имеется в виду адекватность не вообще, а адекватность по тем свойствам модели, которые являются для исследователя существенными. Полная адекватность означает тождество между моделью и прототипом.

Математическая модель может быть адекватна относительно одного класса ситуаций (состояние системы + состояние внешней среды) и не адекватна относительно другого. Модель типа «черный ящик» адекватна, если в рамках выбранной степени точности она функционирует так же, как и реальная система, т.е. определяет тот же оператор преобразования входных сигналов в выходные.

Можно ввести понятие степени (меры) адекватности, которая будет меняться от 0 (отсутствие адекватности) до 1 (полная адекватность). Степень адекватности характеризует долю истинности модели относительно выбранной характеристики (свойства) изучаемого объекта. Введение количественной меры адекватности позволяет в количественном отношении ставить и решать такие задачи, как идентификация, устойчивость, чувствительность, адаптация, обучение модели.

Отметим, что в некоторых простых ситуациях численная оценка степени адекватности не представляет особой трудности. Например, задача аппроксимации заданного множества экспериментальных точек некоторой функцией.

Всякая адекватность относительна и имеет свои границы применения. Например, дифференциальное уравнение

отражает лишь изменение частоты  вращения турбокомпрессора ГТД при изменении расхода топлива G T и не более того. Оно не может отражать таких процессов, как газодинамическая неустойчивость (помпаж) компрессора или колебания лопаток турбины. Если в простых случаях бывает все ясно, то в сложных случаях неадекватность модели бывает не столь ясной. Применение неадекватной модели приводит либо к существенному искажению реального процесса или свойств (характеристик) изучаемого объекта, либо к изучению несуществующих явлений, процессов, свойств и характеристик. В последнем случае проверка адекватности не может осуществляться на чисто дедуктивном (логическом, умозрительном) уровне. Необходимо уточнение модели на основании информации из других источников.

Трудность оценки степени адекватности в общем случае возникает из-за неоднозначности и нечеткости самих критериев адекватности, а также из-за трудности выбора тех признаков, свойств и характеристик, по которым оценивается адекватность. Понятие адекватности является рациональным понятием, поэтому повышение ее степени также осуществляется на рациональном уровне. Следовательно, адекватность модели должна проверяться, контролироваться, уточняться в процессе исследования на частных примерах, аналогиях, экспериментах и т.д. В результате проверки адекватности выясняют, к чему приводят сделанные допущения: то ли к допустимой потере точности, то ли к потере качества. При проверке адекватности также можно обосновать законность применения принятых рабочих гипотез при решении рассматриваемой задачи или проблемы.

Иногда адекватность модели М обладает побочной адекватностью, т.е. она дает правильное количественное и качественное описание не только тех характеристик, для имитации которых она строилась, но и ряда побочных характеристик, потребность в изучении которых может возникнуть в дальнейшем. Эффект побочной адекватности модели возрастает, если в ней нашли отражение хорошо проверенные физические законы, системные принципы, основные положения геометрии, апробированные приемы и способы и т.д. Может, поэтому структурные модели, как правило, обладают более высокой побочной адекватностью, чем функциональные.

Некоторые исследователи в качестве объекта моделирования рассматривают цель. Тогда адекватность модели, с помощью которой достигается поставленная цель, рассматривается либо как мера близости к цели, либо как мера эффективности достижения цели. Например, в адаптивной системе управления по модели модель отражает ту форму движения системы, которая в сложившейся ситуации является наилучшей в смысле принятого критерия. С изменением ситуации модель должна менять свои параметры, чтобы быть более адекватной вновь сложившейся ситуации.

Таким образом, свойство адекватности является важнейшим требованием к модели, но разработка высокоточных и надежных методов проверки адекватности остается по-прежнему трудноразрешимой задачей.

Простота и сложность . Одновременное требование простоты и адекватности модели являются противоречивыми. С точки зрения адекватности сложные модели являются предпочтительнее простых. В сложных моделях можно учесть большее число факторов, влияющих на изучаемые характеристики объектов. Хотя сложные модели и более точно отражают моделируемые свойства оригинала, но они более громоздки, труднообозримы и неудобны в обращении. Поэтому исследователь стремится к упрощению модели, так как с простыми моделями легче оперировать. Например, теория аппроксимации – это теория корректного построения упрощенных математических моделей. При стремлении к построению простой модели должен соблюдаться основной принцип упрощения модели :

упрощать модель можно до тех пор, пока сохраняются основные свойства, характеристики и закономерности, присущие оригиналу.

Этот принцип указывает на предел упрощения.

При этом понятие простоты (или сложности) модели является понятием относительным. Модель считается достаточно простой, если современные средства исследования (математические, информационные, физические) дают возможность провести качественный и количественный анализ с требуемой точностью. А поскольку возможности средств исследований непрерывно растут, то те задачи, которые раньше считались сложными, теперь могут быть отнесены к категории простых. В общем случае в понятие простоты модели входит и психологическое восприятие модели исследователем.

«Адекватность-Простота»

Можно также выделить степень простоты модели, оценив ее количественно, как и степень адекватности, от 0 до 1. При этом значению 0 будут соответствовать недоступные, очень сложные модели, а значению 1 – очень простые. Разобьем степень простоты на три интервала: очень простые, доступные и недоступные (очень сложные). Степень адекватности также разобьем на три интервала: очень высокая, приемлемая, неудовлетворительная. Построим таблицу 1.1, в которой по горизонтали отложены параметры, характеризующие степень адекватности, а по вертикали – степень простоты. В этой таблице области (13), (31), (23), (32) и (33) должны быть исключены из рассмотрения либо из-за неудовлетворительной адекватности, либо из-за очень высокой степени сложности модели и недоступности ее изучения современными средствами исследования. Область (11) также должна быть исключена, так как она дает тривиальные результаты: здесь любая модель является очень простой и высокоточной. Такая ситуация может возникнуть, например, при изучении простых явлений, подчиняемых известным физическим законам (Архимеда, Ньютона, Ома и т.д.).

Формирование моделей в областях (12), (21), (22) необходимо осуществлять в соответствии с некоторыми критериями. Например, в области (12) необходимо стремиться к тому, чтобы была максимальной степень адекватности, в области (21) – степень простоты была минимальной. И только в области (22) необходимо проводить оптимизацию формирования модели по двум противоречивым критериям: минимуму сложности (максимуму простоты) и максимуму точности (степени адекватности). Эта задача оптимизации в общем случае сводится к выбору оптимальных структуры и параметров модели. Более трудной задачей является оптимизация модели как сложной системы, состоящей из отдельных подсистем, соединенных друг с другом в некоторую иерархическую и многосвязную структуру. При этом каждая подсистема и каждый уровень имеют свои локальные критерии сложности и адекватности, отличные от глобальных критериев системы.

Следует отметить, что с целью меньшей потери адекватности упрощение моделей целесообразнее проводить:

а) на физическом уровне с сохранением основных физических соотношений,

б) на структурном уровне с сохранением основных системных свойств.

Упрощение же моделей на математическом (абстрактном) уровне может привести к существенной потере степени адекватности. Например, усечение характеристического уравнения высокого порядка до 2 – 3-го порядка может привести к совершенно неверным выводам о динамических свойствах системы.

Заметим, что более простые (грубые) модели используются при решении задачи синтеза, а более сложные точные модели – при решении задачи анализа.

Конечность моделей . Известно, что мир бесконечен, как любой объект, не только в пространстве и во времени, но и в своей структуре (строении), свойствах, отношениях с другими объектами . Бесконечность проявляется в иерархическом строении систем различной физической природы. Однако при изучении объекта исследователь ограничивается конечным количеством его свойств, связей, используемых ресурсов и т.д. Он как бы «вырезает» из бесконечного мира некоторый конечный кусок в виде конкретного объекта, системы, процесса и т.д. и пытается познать бесконечный мир через конечную модель этого куска. Правомерен ли такой подход к исследованию бесконечного мира? Практика отвечает положительно на этот вопрос, основываясь на свойствах человеческого разума и законах Природы, хотя сам разум конечен, но зато бесконечны генерируемые им способы познания мира. Процесс познания идет через непрерывное расширение наших знаний. Это можно наблюдать на эволюции разума, на эволюции науки и техники, и в частности, на развитии как понятия модели системы, так и видов самих моделей.

Таким образом, конечность моделей систем заключается, во-первых, в том, что они отображают оригинал в конечном числе отношений, т.е. с конечным числом связей с другими объектами, с конечной структурой и конечным количеством свойств на данном уровне изучения, исследования, описания, располагаемых ресурсов. Во-вторых, в том, что ресурсы (информационные, финансовые, энергетические, временные, технические и т.д.) моделирования и наши знания как интеллектуальные ресурсы конечны, а потому объективно ограничивают возможности моделирования и сам процесс познания мира через модели на данном этапе развития человечества. Поэтому исследователь (за редким исключением) имеет дело с конечномерными моделями. Однако выбор размерности модели (ее степени свободы, переменных состояния) тесно связан с классом решаемых задач. Увеличение размерности модели связано с проблемами сложности и адекватности. При этом необходимо знать, какова функциональная зависимость между степенью сложности и размерностью модели. Если эта зависимость степенная, то проблема может быть решена за счет применения высокопроизводительных вычислительных систем. Если же эта зависимость экспоненциальная, то «проклятие размерности» неизбежно и избавиться от него практически не удается. В частности, это относится к созданию универсального метода поиска экстремума функций многих переменных.

Как отмечалось выше, увеличение размерности модели приводит к повышению степени адекватности и одновременно к усложнению модели. При этом степень сложности ограничена возможностью оперирования с моделью, т.е. теми средствами моделирования, которыми располагает исследователь. Необходимость перехода от грубой простой модели к более точной реализуется за счет увеличения размерности модели путем привлечения новых переменных, качественно отличающихся от основных и которыми пренебрегли при построении грубой модели. Эти переменные могут быть отнесены к одному из следующих трех классов:

    быстропротекающие переменные, протяженность которых во времени или в пространстве столь мала, что при грубом рассмотрении они принимались во внимание своими интегральными или осредненными характеристиками;

    медленнопротекающие переменные, протяженность изменения которых столь велика, что в грубых моделях они считались постоянными;

    малые переменные (малые параметры), значения и влияние которых на основные характеристики системы столь малы, что в грубых моделях они игнорировались.

Отметим, что разделение сложного движения системы по скорости на быстропротекающее и медленнопротекающее движение дает возможность изучать их в грубом приближении независимо друг от друга, что упрощает решение исходной задачи. Что касается малых переменных, то ими пренебрегают обычно при решении задачи синтеза, но стараются учесть их влияние на свойства системы при решении задачи анализа.

При моделировании стремятся по возможности выделить небольшое число основных факторов, влияние которых одного порядка и не слишком сложно описывается математически, а влияние других факторов оказывается возможным учесть с помощью осредненных, интегральных или "замороженных" характеристик. При этом одни и те же факторы могут оказывать существенно различное влияние на различные характеристики и свойства системы. Обычно учет влияния вышеперечисленных трех классов переменных на свойства системы оказывается вполне достаточным.

Приближенность моделей . Из вышеизложенного следует, что конечность и простота (упрощенность) модели характеризуют качественное различие (на структурном уровне) между оригиналом и моделью. Тогда приближенность модели будет характеризовать количественную сторону этого различия. Можно ввести количественную меру приближенности путем сравнения, например, грубой модели с более точной эталонной (полной, идеальной) моделью или с реальной моделью. Приближенность модели к оригиналу неизбежна, существует объективно, так как модель как другой объект отражает лишь отдельные свойства оригинала. Поэтому степень приближенности (близости, точности) модели к оригиналу определяется постановкой задачи, целью моделирования. Погоня за повышением точности модели приводит к ее чрезмерному усложнению, а следовательно, к снижению ее практической ценности, т.е. возможности ее практического использования. Поэтому при моделировании сложных (человеко-машинных, организационных) систем точность и практический смысл несовместимы и исключают друг друга (принцип Л.А. Заде). Причина противоречивости и несовместимости требований точности и практичности модели кроется в неопределенности и нечеткости знаний о самом оригинале: его поведении, его свойствах и характеристиках, о поведении окружающей среды, о мышлении и поведении человека, о механизмах формирования цели, путей и средствах ее достижения и т.д.

Истинность моделей . В каждой модели есть доля истины, т.е. любая модель в чем-то правильно отражает оригинал. Степень истинности модели выявляется только при практическом сравнении её с оригиналом, ибо только практика является критерием истинности.

С одной стороны, в любой модели содержится безусловно истинное, т.е. определенно известное и правильное. С другой стороны, в модели содержится и условно истинное, т.е. верное лишь при определенных условиях. Типовая ошибка при моделировании заключается в том, что исследователи применяют те или иные модели без проверки условий их истинности, границ их применимости. Такой подход приводит заведомо к получению неверных результатов.

Отметим, что в любой модели также содержится предположительно-истинное (правдоподобное), т.е. нечто, могущее быть в условиях неопределенности либо верным, либо ложным. Только на практике устанавливается фактическое соотношение между истинным и ложным в конкретных условиях. Например, в гипотезах как абстрактных познавательных моделях трудно выявить соотношение между истинным и ложным. Только практическая проверка гипотез позволяет выявить это соотношение.

При анализе уровня истинности модели необходимо выяснить знания, содержащиеся в них: 1) точные, достоверные знания; 2) знания, достоверные при определенных условиях; 3) знания, оцениваемые с некоторой степенью неопределенности (с известной вероятностью для стохастических моделей или с известной функцией принадлежности для нечетких моделей); 4) знания, не поддающиеся оценке даже с некоторой степенью неопределенности; 5) незнания, т.е. то, что неизвестно.

Таким образом, оценка истинности модели как формы знаний сводится к выявлению содержания в нем как объективных достоверных знаний, правильно отображающих оригинал, так и знаний, приближенно оценивающих оригинал, а также то, что составляет незнание.

Контроль моделей . При построении математических моделей объектов, систем, процессов целесообразно придерживаться следующих рекомендаций:

    Моделирование надо начинать с построения самых грубых моделей на основе выделения самых существенных факторов. При этом необходимо четко представлять как цель моделирования, так и цель познания с помощью данных моделей.

    Желательно не привлекать к работе искусственные и труднопроверяемые гипотезы.

    Необходимо контролировать размерность переменных, придерживаясь правила: складываться и приравниваться могут только величины одинаковой размерности. Этим правилом необходимо пользоваться на всех этапах вывода тех или иных соотношений.

    Необходимо контролировать порядок складываемых друг с другом величин с тем, чтобы выделить основные слагаемые (переменные, факторы) и отбросить малозначительные. При этом должно сохраняться свойство «грубости» модели: отбрасывание малых величин приводит к малому изменению количественных выводов и к сохранению качественных результатов. Сказанное относится и к контролю порядка поправочных членов при аппроксимации нелинейных характеристик.

    Необходимо контролировать характер функциональных зависимостей, придерживаясь правила: проверять сохранность зависимости изменения направления и скорости одних переменных от изменения других. Это правило позволяет глубже понять физический смысл и правильность выведенных соотношений.

    Необходимо контролировать поведение переменных или некоторых соотношений при приближении параметров модели или их комбинаций к крайне допустимым (особым) точкам. Обычно в экстремальной точке модель упрощается или вырождается, а соотношения приобретают более наглядный смысл и могут быть проще проверены, а окончательные выводы могут быть продублированы каким-либо другим методом. Исследования экстремальных случаев могут служить для асимптотических представлений поведения системы (решений) в условиях, близких к экстремальным.

    Необходимо контролировать поведение модели в известных условиях: удовлетворение функции как модели поставленным граничным условиям; поведение системы как модели при действии на нее типовых входных сигналов.

    Необходимо контролировать получение побочных эффектов и результатов, анализ которых может дать новые направления в исследованиях или потребовать перестройки самой модели.

Таким образом, постоянный контроль за правильностью функционирования моделей в процессе исследования позволяет избежать грубых ошибок в конечном результате. При этом выявленные недостатки модели исправляются в ходе моделирования, а не вычисляются заранее.

Информация - это абстракция.
Модель
- это тот объект, та система, которая позволяет облечь эту информацию в конкретное, например компьютерное, представление, содержание.
Моделирование - тот процесс, метод, который позволяет осуществлять перенос информации от реальной системы к модели и наоборот.

Модели по их назначению бывают познавательными, прагматическими и инструментальными.

  • Познавательная модель - форма организации и представления знаний, средство соединения новых и старых знаний. Познавательная модель, как правило, подгоняется под реальность и является теоретической моделью.
  • Прагматическая модель - средство организации практических действий, рабочего представления целей системы для ее управления. Реальность подгоняется под некоторую прагматическую модель. Это, как правило, прикладная модель.
  • Инструментальная модель - средство построения, исследования и/или использования прагматических и/или познавательных моделей. Познавательные модели отражают существующие, а прагматические - хоть и не существующие, но желаемые и, возможно, исполнимые отношения и связи.

По уровню моделирования модели бывают эмпирическими, теоретическими и смешанными.

  • Эмпирическая - на основе эмпирических фактов, зависимостей;
  • Теоретическая - на основе математических описаний;
  • Смешанная или полуэмпирическая - использующая эмпирические зависимости и математические описания.

Проблема моделирования состоит из трех задач:

  1. построения модели (эта задача менее формализуема и конструктивна, в том смысле, что нет алгоритма для построения моделей);
  2. исследования модели (эта задача более формализуема, имеются методы исследования различных классов моделей);
  3. использования модели (конструктивная и конкретизируемая задача).
Моделирование - это универсальный метод получения, описания и использования знаний. Оно используется в любой профессиональной деятельности.
В современной науке и технологии математическое моделирование усиливается, актуализируется проблемами, успехами других наук. Математическое моделирование реальных и нелинейных систем живой и неживой природы позволяет перекидывать мостики между нашими знаниями и реальными системами, процессами, в том числе и мыслительными.

Моделирование - процесс построения, изучения и применения моделей.

Т.е. можно сказать, что

моделировaние - это изучение объектa путем построения и исследования его модели, осуществляемое с определенной целью и состоит в зaмене экспериментa с оригинaлом экспериментом нa модели.

Приведем наиболее важные типы моделей (моделирования) с краткими определениями, примерами.

Модель называется статической , если среди параметров, участвующих в описании модели, нет временного параметра. Статическая модель в каждый момент времени дает лишь «фотографию» системы, ее срез.

Модель динамическая, если среди параметров модели есть временной параметр, т. е. она отображает систему (процессы в системе) во времени.

Модель дискретная , если она описывает поведение системы только в дискретные моменты времени.

Модель непрерывная , если она описывает поведение системы для всех моментов времени из некоторого промежутка.

Модель имитационная , если она предназначена для испытания или изучения, проигрывания возможных путей развития и поведения объекта путем варьирования некоторых или всех параметров модели.

Модель детерминированная , если каждому входному набору параметров соответствует вполне определенный и однозначно определяемый набор выходных параметров; в противном случае модель недетерминированная , стохастическая (вероятностная).

Модель теоретико-множественная , если представима с помощью некоторых множеств и отношений принадлежности им и между ними.

Модель логическая , если она представима предикатами, логическими функциями.

Модель игровая , если она описывает, реализует некоторую игровую ситуацию Между участниками игры (лицами, коалициями).

Модель алгоритмическая , если она описана некоторым алгоритмом или комплексом алгоритмов, определяющим ее функционирование, развитие. Введение такого на первый взгляд непривычного типа моделей кажется нам вполне обоснованным, так как не все модели могут быть исследованы или реализованы алгоритмически.

Модель языковая , лингвистическая , если она представлена некоторым лингвистическим объектом, формализованной языковой системой или структурой. Иногда такие модели называют вербальными, синтаксическими и т. п.

Модель визуальная , если она позволяет визуализировать отношения и связи моделируемой системы, особенно в динамике.

Модель натурная , если она есть материальная копия объекта моделирования.

Модель геометрическая , графическая , если она представима геометрическими образами и объектами.

Тип модели зависит от информационной сущности моделируемой системы, от связей и отношений ее подсистем и элементов, а не от ее физической природы.

Границы между моделями различных типов или же отнесение модели к тому или иному типу часто весьма условны. Можно говорить о различных режимах использования моделей - имитационном, стохастическом и т. д.
Все основные типы моделей, возможно, за исключением некоторых натурных - системно-информационные (инфосистемные) и информационно-логические (инфологические). В узком понимании информационная модель - это модель, описывающая, изучающая, актуализирующая информационные связи и отношения в исследуемой системе. В еще более узком понимании информационная модель - это модель, основанная на данных, структурах данных, их информационно-логическом представлении и обработке. Как широкое, так и узкое понимание информационной модели необходимы, определяются решаемой проблемой и доступными для ее решения ресурсами, в первую очередь информационно-логическими.

Основные свойства любой модели:

  • конечность - модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
  • упрощенность - модель отображает только существенные стороны объекта и, кроме того, должна быть проста для исследования или воспроизведения;
  • приблизительность - действительность отображается моделью грубо, или приблизительно;
  • адекватность моделируемой системе - модель должна успешно описывать моделируемую систему;
  • наглядность, обозримость основных свойств и отношений;
  • доступность и технологичность для исследования или воспроизведения;
  • информативность - модель должна содержать достаточную информацию о системе (в рамках гипотез, принятых при построении модели) и давать возможность получить новую информацию;
  • сохранение информации , содержавшейся в оригинале (с точностью рассматриваемых при построении модели гипотез);
  • полнота - в модели должны быть учтены все основные связи и отношения, необходимые для обеспечения цели моделирования;
  • устойчивость - модель должна описывать и обеспечивать устойчивое поведение системы, если даже та вначале является неустойчивой;
  • замкнутость - модель учитывает и отображает замкнутую систему необходимых основных гипотез, связей и отношений.

Проблема адекватности . Важнейшим требованием к модели является требование адекватности (соответствия) ее реальному объекту (процессу, системе и т.д.) относ-но выбранного множества его характеристик и свойств. Под адекватностью модели понимают правильное качественное и количественное описание объекта (процесса) по выбранному множеству характеристик с некоторой разумной степенью точности. При этом имеется в виду адекватность не вообще, а адекватность по тем свойствам модели, которые являются для исследователя существенными. Полная адекватность означает тождество между моделью и прототипом. Мат. модель может быть адек-на относ-но одного класса ситуаций (состояние системы + состояние внешней среды) и не адекватна относительно другого. Трудность оценки степени адекватности в общем случае возникает из-за неоднозначности и нечеткости самих критериев адекватности, а также из-за трудности выбора тех признаков, свойств и характеристик, по которым оценивается адекватность. Понятие адекватности является рациональным понятием, поэтому повышение ее степени также осуществляется на рациональном уровне. След-но, адекв-сть модели должна провер-ся, контрол-ся, уточняться в процессе исследования на частных примерах, аналогиях, экспер-ах и т.д. В результате проверки адекватности выясняют, к чему приводят сделанные допущения: то ли к допустимой потере точности, то ли к потере качества. При проверке адекватности также можно обосновать законность применения принятых рабочих гипотез при решении рассматриваемой задачи или проблемы.

Простота и сложность. Одноврем. треб-ие простоты и адекв-сти модели являются противоречивыми. С точки зрения адекв-сти сложные модели явл. предпочтительнее простых. В сложных моделях можно учесть большее число факторов. Хотя сложные модели и более точно отражают модел-ые св-ва оригинала, но они более громоздки. Посему исслед-ль стрем-ся к упрощ. модели, так как с прост. мод-ми легче оперир-ть.

Конечность моделей . Известно, что мир бесконечен, как любой объект, не только в пространстве и во времени, но и в своей структуре (строении), свойствах, отношениях с другими объектами Бесконечность проявляется в иерархическом строении систем различной физической природы. Однако при изучении объекта исследователь ограничивается конечным количеством его свойств, связей, используемых ресурсов и т.д. Увеличение размерности модели связано с проблемами сложности и адекватности. При этом необходимо знать, какова функциональная зависимость между степенью сложности и размерностью модели. Увел. размерности модели приводит к повыш. степени адекватности и одновременно к усложнению модели. При этом степень сложности огр. возможностью оперирования с моделью. Необходимость перехода от грубой простой модели к более точной реализуется за счет увел. Размер-ти модели путем привлечения новых переменных, качественно отличающихся от основных и которыми пренебрегли при построении грубой модели. При моделировании стремятся по возможности выделить небольшое число основных факторов. При этом одни и те же факторы могут оказывать существенно различное влияние на различные характеристики и свойства системы.



Приближенность моделей . Из вышеизложенного следует, что конечность и простота (упрощенность) модели характеризуют качественное различие (на структ-ом уровне) между ориг-лом и моделью. Тогда приближ-сть модели будет характ-ать количес-ную сторону этого разл-я. Можно ввести количес-ную меру приближенности путем сравнения, например, грубой модели с более точной эталонной (полной, идеальной) моделью или с реальной моделью. Приближ. модели к ориг-у неизбежна, существует объективно, так как модель как другой объект отражает лишь отдельные свойства оригинала. Поэтому степень приближенности (близости, точности) модели к оригиналу определяется постановкой задачи, целью моделирования.

Истинность моделей. В каждой модели есть доля истины, т.е. любая модель в чем-то правильно отражает оригинал. Степень истинности модели выявляется только при практическом сравнении её с оригиналом, ибо только практика является критерием истинности. Таким образом, оценка истинности модели как формы знаний сводится к выявлению содержания в нем как объективных достоверных знаний, правильно отображающих оригинал, так и знаний, приближенно оценивающих оригинал, а также то, что составляет незнание.


34. Понятие адекватность» модели. Особенности оценки адекватности моделей.

Важнейшим требованием к модели является требование адекватности (соответствия) ее реальному объекту (процессу, системе и т.д.) относительно выбранного множества его характеристик и свойств. Под адекватностью модели понимают правильное качественное и количественное описание объекта (процесса) по выбранному множеству характеристик с некоторой разумной степенью точности. При этом имеется в виду адекватность не вообще, а адекватность по тем свойствам модели, которые являются для исследователя существенными. Полная адекватность означает тождество между моделью и прототипом.

Математическая модель может быть адекватна относительно одного класса ситуаций (состояние системы + состояние внешней среды) и не адекватна относительно другого. Модель типа «черный ящик» адекватна, если в рамках выбранной степени точности она функционирует так же, как и реальная система, т.е. определяет тот же оператор преобразования входных сигналов в выходные. В некоторых простых ситуациях численная оценка степени адекватности не представляет особой трудности. Например, задача аппроксимации заданного множества экспериментальных точек некоторой функцией. Всякая адекватность относительна и имеет свои границы применения. Если в простых случаях бывает все ясно, то в сложных случаях неадекватность модели бывает не столь ясной. Применение неадекватной модели приводит либо к существенному искажению реального процесса или свойств (характеристик) изучаемого объекта, либо к изучению несуществующих явлений, процессов, свойств и характеристик. В последнем случае проверка адекватности не может осуществляться на чисто дедуктивном (логическом, умозрительном) уровне. Необходимо уточнение модели на основании информации из других источников.

Особенности оценки адекватности:


35. Базовые принципы оценки адекватности моделей. Методы обеспечения адекватности моделей.

Принципы оценки адекватности:

1. Если экспериментальная модель адекватна, ее можно использовать для принятия решений относительно системы, которую она представляет, как если бы они принимались на основании экспериментов с реальной моделью.

2.Сложность или простота оценки адекватности зависит от того существует ли на данный момент версия этой системы.

3. Имитационная модель сложной системы может только приблизительно соответствовать оригиналу, независимо от того сколько усилий потрачено на разработку, т.к. абсолютно адекватных моделей не существует.

4. Имитационная модель всегда разрабатывается для определенного множества целей. Модель, которая адекватна для одной может быть неадекватна для другой.

5. Оценка адекватности модели должна производиться с участием лиц, принимающих решение по оценки проектов системы.

6. Оценка адекватности должна проводиться на всем протяжении их разработки и применения.

Методы обеспечения адекватности:

1. Сбор высококачественной информации о системе: -консультации со специалистами; –наблюдение за системой; - изучение соответствующей теории; - изучение результатов, полученных в ходе моделирования подобных систем; - использование опыта, интуиции разработчика.

2. Регулярное взаимодействие с заказчиком

3. Документальная поддержка предположений и их структурированный критический анализ: - Необходимо записывать все предположения и ограничения, принятые для имитационной модели; - необходимо производить структурный разбор концептуальной модели с присутствием специалистов по изучаемым вопросам => Из этого следует валидация концептуальной модели.

4. Валидация компонентов модели количественными методами.

5. Валидация выходных данных всей имитационной модели(Проверка идентичности выходных данных модели и выходных данных, ожидаемых от реальной системы)

6. Анимация процесса моделирования

Обобщенная технология оценки и управления качеством модели первого класса:

1 – формирование цепей функционирования объекта 2- формирование входных сигналов 3- формирование целей моделирования 4 – управление качеством моделирования 5,6 – управление параметрами, структурой, концептуальным описанием